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Abstract — An efficient methodology for the accurate
calculation of closed-form Green’s function in multilayered
planar media is combined with the adaptive integral method
(AIM) to provide a fast, iterative, full-wave solver for the
analysis of complex planar integrated circuits. The
computational complexity per iteration and memeory
requirements for the AIM-based electromagnetic solver
scale as O(NlogN) and O(N), respectively, where N is the
number of unknowns in the discrete model. The accuracy
and efficiency of the solver is demonstrated through its
application to the modeling of an integrated, planar circuit
component,

L. INTRODUCTION

One of the primary obstacles in the effective prototyping
and design of system-in-a-package or system-on-chip
designs is the large circuit density and the associated
strong electromagnetic coupling between both passive and
non-passive components and their associated interconnect
network. More specifically, circuit components cannot be
designed independently anymore; rather a global
electromagnetic modeling is required that takes into
account all electromagnetic interactions with adjacent
components in order to effect subsystem or system design
optimization and/or performance verification. Furthermore,
the mixed-signal attributes of these highly integrated
designs further impound the electromagnetic complexity of
the problem since electromagnetic interactions and their
impact on component, subsystem and system performance
must be calculated over a very broad frequency bandwidth.
Finally, it is mentioned that, contrary to narrowband
microwave modeling of isolated components, it is the
fineness of the feature size rather than sufficient
wavelength resolution that becomes the dominating factor
in the choice of the grid size for the development of the
discrete model.

From a computational complexity point of view the
aforementioned attributes of the electromagnetic analysis
of high-density, mixed-signal circuits, results in discrete
models involving very large numbers of unknowns even
when integral equation methods are used for the
electromagnetic analysis. In addition to the time-consuming
and often times computationally prohibitive direct
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Fig. 1. Generic geometry of a planar microstrip
structure emerged in layered media.

inversion of the resulting linear system of equations, the
storage of the matrix itself becomes an issue of concern. To
address these issues, several methodologies have been
proposed over the past several years toward the fast
solution of the matrix equation resulting from the
discretization of the electromagnetic integral equation [1],
[2]. One of the issues that has not been resolved entirely in
the context of these fast solvers is the way the
electromagnetic Green’s function is calculated in the case
where the circuitry is embedded in a multilayered, planar
dielectric substrate. As already mentioned, memory storage
is at a premium when dense circuits are modeled. Hence,
rather than storing the method of moments matrix, its
calculation on the fly during the iterative solution process
is desired. This, in turn, requires a fast, yet accurate
calculation of the layered media Green’s function.

This issue is addressed in this paper. More specifically,
a highly accurate closed-form expression is derived for the
layered media Green’s function, based on the extension of
the methodology presented in [3]. This closed-form Green’s
function is used in conjunction with the adaptive integral
method for the electromagnetic analysis of integrated
circuits in layered media. The accuracy and efficiency of
the resulting solver are examined through its application to
the modeling of a generic planar integrated circuit.
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II. INTEGRAL EQUATION SCHEME ACCELERATED BY AIM

Assuming that the circuit structure is planar, we reduce
the boundary value problem to the set of integral
equations,

[67G 7 0.6ds'+ [ G" G 7y J,¢")ds' = EX (F)(1a)
fs G (F ) J,(¢)ds"+ j G”(F F)-J,(F)ds’ = E"(F)(1b)
Description of the layered media Greens function G is
given in the next Section. Excitation of the circuit i$
modeled using either impressed voltage or impressed
current models presented in [4]. Using method of moments
(MoM), equations (1) can be solved numerically. As basis
functions for the unknown current expansion we choose
regular roof-top functions

I (x,) = ﬁ: 1% (x,y) » @
n=1

where # assumes the values x and y. In order to avoid
hypersingular integration we move the derivatives acting
on the kernel to the testing functions
’tf‘) (x,y) by choosing testing functions to be smooth and

singular

twice differentiable with respect to both X and
Y coordinates. As a result, the discrete approximation of

(1) is obtained in the form of the following set of linear

equations
zZ 7||r \'a
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where Z, is the scattered field produced by the nth
basis function of V orientation and tested with the m th

testing function of # orientation. Vectors 1" and I’ are
the unknown coefficients in the expansion, and the vectors
V* and V’ describe the weighted forms of the excitation.
For electrically large or dense circuits, iterative methods
(e.g. conjugate gradient) are needed to solve (3), where the
computational complexity of such methods is dominated by
the O(N®) matrix-vector product in each iteration.

AIM addresses this complexity by splitting Z-I, the
product of the MoM matrix and vector of current expansion
coefficients, into “near-zone” and “far-zone” interactions.
This splitting may be cast in the form
z1=25 1+2" 1=27 1+(2,, - 1-275 -1).(4

MoM
In the above equation, Z; -1contains the interactions

between closely spaced elements separated by distances
less than some threshold distance and calculated using

standard MoM. Clearly, the matrix Z"*""

s 18 very sparse and

the computational complexity of Z,," -1is O(N).

The “far-zone” interactions are treated in a very different
manner. First, a rectangular grid is laid over the entire area
occupied by the circuit. Each of the basis and testing

functions, b (x,y) and #“(x,y), in the current

expansions are replaced by M *equivalent “delta” sources,

n M-1 M-
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M=l M-1
) =i0(F) =3 3T s~ 0y-y), (5b)
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where {x", y;'i?"} are the locations of the delta sources

associated with the nth basis or testing functions [1].
Substitution of (5) into the integrals that define the
elements of the MoM matrix yields

K1 K ~1K -1K,-1

zo = X3 3 107 (k= K)on (= K )) B
©

In the above equation, K|, K, are the total number of the

where m = 1,..N;n=1,.N

v

AIM grid points along x and y, respectively. Since only AM*
delta sources are used in (5), the matrices B’ and T
each have only M’ -N,, u=x or y,non-zero elements.

Thus, the matrix-vector product in the iterative solution of
the MoM equation may be computed as
T(X)GD‘B(X)TIX + T(x )nyB(ylil y
Z,, 1= . I )
T(}')G}WB( x) I—\' + T(y)G.V,VB()') I.V
Because the Green’s function for interactions between the

delta sources on the rectangular grid has a convolutional
form, the complexity of (7) is O(Nlog N) and the product
can be computed using FFT. The product Z , -1 is
computed at each iteration (see (4)).

While the calculation of the “far-zone” interactions using
the AIM process is accurate, the calculated “near-zone”
interactions are not. Thus, the  operation
Z, -1-7°, 1is required to correct the calculation of
the “near-zone” interactions by replacing the AIM
calculations with those obtained using the “exact” MoM
representation of the expansion function interactions.
These operations are of O(N) complexity.

AIM implementation also relaxes memory requirements
since only the MoM matrix elements that describe the

_“near-zone” are stored. Avoiding the O(N’) storage of

the MoM matrix results in memory requirements of O(N) .

Furthermore, since Green’s function matrices are Toeplitz,
the memory requirements also scale as O(N) .
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1. GREEN’S FUNCTION OF PLANAR LAYERED MEDIA

In [3], a closed-form formula for the Green’s function in
planar stratified media was given as a finite series of Hankel
functions. This representation was found by using finite-
difference scheme to solve for the vector potentials in the
spectral domain, which leads to analytic evaluation of
Sommerfeld integrals. Briefly presented here is a similar
approach based on the expansion of the vector potentials
in terms of Chebyshev polynomials. The method is valid
for arbitrary orientation of exciting electric or magnetic
dipole.

As an example, let us consider an x directed electric
dipole located at x” = y' =0 and embedded in N dielectric

layers stacked in Z. To describe the dipole field it is

necessary to consider two components of vector potential.

Here, as in [3), the magnetic vector potential is taken to be

A=45%+4,2,where H=VxA . After applying Fourier -

Bessel transform to the scalar Helmholtz equations for the

vector potentials, and defining an auxiliary potential as
94,

A= x> Ve arrive at the following equations to solve
in the spectral domam
A" —Z (kP -N)4, = ﬁ(z—z') +(k2 A, =0.
®

Within each layer, the solution of both 4, and A, is
expanded in terms of M +1 Chebyshev polynomials of
order zero to M . Substitution of this expansion into (8)
and applying a point collocation technique using the
Gauss-Labatto collocation points, the solution in each layer
can be written in the form
[D? +#1]a-[MT]a=—1. ©

Here Lis the (M +1)x (M +1) identity matrix, @ is a vector
of 2(M +1) unknowns corresponding to the potentials at

the collocation points, f is a vector of all zeros except for
the collocation point corresponding to z’ if it exists in this
layer, and D? is the square of the Chebyshev collocation
derivative matrix for the Gauss-Labatto points given in [5].
It should be noted that the dipole must be located at an
interface between two layers in order for the solution to
have a discontinuous derivative at z’. If the dipole does
not already reside at a layer interface, an “artificial”
interface must be added at this location. The N equations
in the form of (9) are then combined into a single
2N(M -1)x2N(M +1) matrix equation in block form,

where the equations at collocation points corresponding to
the layer interfaces have been removed. To couple
together the N  matrix blocks, the unknowns
corresponding to potentials located at the layer interfaces

will be removed by use of the boundary conditions [3].
The boundary conditions at the layer interfaces are

=4, K =A;, 9E _df 1y
&z dz 2m ¢
s+(z;+i’£]=e (A; ‘“‘] (10)
dz dz

The + and - represent the solutions at the interface from
above and below respectively, and 3, =1 at the interface
corresponding to the dipole location. These boundary
conditions can be found in [3] for interfaces where §_. =
To use these boundary conditions, we first note that the
layer interfaces correspond to collocation points, and the
z derivative of the potential at the i" collocation points
can be written as [5]

diy _&24,D;
dz = d
In (11) d is the thickness of the layer, D, is the ij®

an

element of the derivative matrix D, and A,, is potential at
the j™ collocation point. Equation (11) is applied to (10)
for both ,Zx and 7\2,
used to eliminate the unknown potentials at the interface
locations. Once this is done, the system of 2N (M -1)

and the resulting relationships are

unknowns can be written in the form

[a+¥1]a=-1 (12)
where Aand a are now a full matrix and vector due to the
application of (10). Eigenvalue decomposition on A gives
pole-residual form for the spectrums of potentials. As a

result, the inverse Fourier-Bessel transform provides a
closed-form formula for the potential in spatial domain

m

4(p22)]_ mdET,@T,E) " "
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(13)
Here 4 = fs.]exp(-j/2arg(s,)) T, is the m th

Chebyshev polynomial, the z, s are the collocation points

for the layer where the observation point z is located, P
and s are the eigenvectors and eigenvalues of A, and R is
the matrix vector product R =P~!.f . Coefficients c,,c,
are equal to 2, if m,n =0 or M and 1 otherwise.

Although three nested series appear in (13), the superior
convergence of the Chebyshev polynomials, compared to a
finite difference solution, allows for a smaller number of
total unknowns that reduce the -complexity of the
eigenvalue decomposition. In addition, the use of
Chebyshev polynomials allows for the derivative of A,

with respect to z to be more accurately taken as analytic
derivatives of the Chebyshev polynomials.
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VI. NUMERICAL RESULTS

To validate the proposed formulation of the Green’s.
function in conjunction with the AIM algorithm, we
considered various microwave components such as
microstrip  antennas, filters and  multi-conductor
transmission lines. On Fig.2 the input impedance of a low-
pass filter considered in [6] versus frequency is presented.
The solid line on the plot corresponds to the MoM
solution based on the Green’s function generated by
discrete complex image method and the crosses correspond
to the solution obtained by AIM using the Green’s
function described in this paper. It is important to notice
that results in Fig. 2 were obtained using applied-voltage
excitation model [4] without deembeding of the effects
associated with truncation of the feeding lines. The lines
were truncated at the length of 10mm on both sides of the
filter and the second port was left open.

In Fig. 3 CPU time per iteration and memory storage
required for MoM and AIM versus number of unknowns is
shown. One can see that the memory used by AIM grows
linearly with the number of unknowns N, while the memory
réquired for a standard MoM solution grows as M. Such
dramatic memory savings are possible because storage of
the entire matrix Z is avoided in the AIM solution. It is
also be noted that relatively few elements of Z , only those
associated with near interactions, are computed. Hence the
AIM scheme fills the matrix in O(N) CPU operations
instead of O(V?) operations traditionally required by MoM.

In Fig. 3 we also demonstrate that AIM leads to
O(Nlog(N)) CPU time complexity per iteration for the
matrix-vector product Z -1, compared to O(NZ) complexity
associated with the method of moments. Clearly, for a low
number of unknowns direct matrix-vector evaluation is
faster, but time saving advantages for the iterative solver in
the AIM implementation becomes obvious when the
number of unknowns exceeds 10°,

V. CONCLUSION

Fast algorithms become essential when the number of
unknowns associated with a microwave circuit analysis
problem is large. In this work we demonstrated how a new
efficient Green’s function evaluation scheme could be used
in conjunction with AIM to provide fast and accurate tool
for simulation of dense planar integrated circuits.
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