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AbStlWt - An efficient methodology for the accurate 
calculation of closed-form Green’s function in multilayered 
planar media is combined with the adaptive integral method 
(AIM) to provide a fast, iterative, full-wave solver for the 
analysis of complex planar integrated circuits. The 
computational complexity per iteration and memory 
requirements for the AIM-based electromagnetic solver 
scale as O(NlogN) and O(N), respectively, where N is the 
number of unknowns in the discrete model. The accuracy 
and efficiency of the solver is demonstrated through its 
application to the modeling of an integrated, planar circuit 
component. 

I. INTRODUCTION 

One of the primary obstacles in the effective prototyping 
and design of system-in-a-package or system-on-chip 
designs is the large circuit density and the associated 
strong electromagnetic coupling between both passive and 
non-passive components and their associated interconnect 
network. More specifically, circuit components cannot be 
designed independently anymore; rather a global 
electromagnetic modeling is required that takes into 
account all electromagnetic interactions with adjacent 
components in order to effect subsystem or system design 
optimization and/or performance verification. Furthermore, 
the mixed-signal attributes of these highly integrated 
designs further impound the electromagnetic complexity of 
the problem since electromagnetic interactions and their 
impact on component, subsystem and system performance 
must be calculated over a very broad frequency bandwidth. 
Finally, it is mentioned that, contrary to narrowband 
microwave modeling of isolated components, it is the 
fineness of the feature size rather than sufficient 
wavelength resolution that becomes the dominating factor 
in the choice of the grid size for the development of the 
discrete model. 

From a computational complexity point of view the 
aforementioned attributes of the electromagnetic analysis 
of high-density, mixed-signal circuits, results in discrete 
models involving very large numbers of unknowns even 
when integral equation methods are used for the 
electromagnetic analysis. In addition to the time-consuming 
and often times computationally prohibitive direct 

Fig. 1. Generic geometry of a planar microstrip 
structure emerged in layered media. 

inversion of the resulting linear system of equations, the 
storage of the matrix itself becomes an issue of concern. To 
address these issues, several methodologies have been 
proposed over the past several years toward the fast 
solution of the matrix equation resulting from the 
discretization of the electromagnetic integral equation [ 11, 
[2]. One of the issues that has not been resolved entirely in 
the context of these fast solvers is the way the 
electromagnetic Green’s function is calculated in the case 
where the circuitry is embedded in a multilayered, planar 
dielectric substrate. As already mentioned, memory storage 
is at a premium when dense circuits are modeled. Hence, 
rather than storing the method of moments matrix, its 
calculation on the fly during the iterative solution process 
is desired. This, in turn, requires a fast, yet accurate 
calculation of the layered media Green’s function. 

This issue is addressed in this paper. More specifically, 
a highly accurate closed-form expression is derived for the 
layered media Green’s function, based on the extension of 
the methodology presented in [3]. This closed-form Green’s 
function is used in conjunction with the adaptive integral 
method for the electromagnetic analysis of integrated 
circuits in layered media. The accuracy and efficiency of 
the resulting solver are examined through its application to 
the modeling of a generic planar integrated circuit. 
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II. INTEGRAL EQUATION SCHEME ACCELERATED BY AIM 

Assuming that the circuit structure is planar, we reduce 
the boundary value problem to the set of integral 
equations, 

I, G”(7,~).J,(~)L’+~G”(rI).J,(~‘)~s’= E:“‘(-;)(la) 

IsG”(7,r’).J,(r’)ds’+IsG”(~,F’).J,(~))ds’=E:”’(-;)(Ib), 

Description of the layered media Greens function G is 
given in the next Section. Excitation of the circuit is 
modeled using either impressed voltage or impressed 
current models presented in [4]. Using method of moments 
(MOM), equations (1) can be solved numerically. As basis 
functions for the unknown current expansion we choose 
regular roof-top functions 

J,(n,y) = $ fy”‘(r,y) 9 

where u assumes the values x and y. In order to avoid 
hypersingular integration we move the derivatives acting 
on the singular kernel to the testing functions 

!F)(x,y)by choosing testing functions to be smooth and 

twice differentiable with respect to both x and 
y  coordinates. As a result, the discrete appioximation of 

(1) is obtained in the form of the following set of linear 
equations 

[:: ;][;:]= [::I3 C3) 
where Zq is the scattered field produced by the n th 

basis function of v  orientation and tested with the m th 

testing function of u orientation. Vectors I” and I” are 
the unknown coefficients in the expansion, and the vectors 

V’ and Vy describe the weighted forms of the excitation. 
For electrically large or dense circuits, iterative methods 
(e.g. conjugate gradient) are needed to solve (3), where the 
computational complexity of such methods is dominated by 

the O(N*) matrix-vector product in each iteration. 

AIM addresses this complexity by splitting Z. I , the 
product of the MOM matrix and vector of current expansion 
coefficients, into ‘near-zone” and “far-zone” interactions. 
This splitting may be cast in the form 
Z.I=Z~~.I+Z”‘.I=z;;bll,.r+(z”,~.I-z~~.I).(4) 

In the above equation, ZzM ~1 contains the interactions 

between closely spaced elements separated by distances 
less than some threshold distance and calculated using 

standard MOM. Clearly, the matrix Zyz is very sparse and 

the computational complexity of ZzM .I is Q(N). 

The “far-zone” interactions are treated in a very different 
manner. First, a rectangular grid is laid over the entire area 
occupied by the circuit. Each of the basis and testing 

functions, bi” (x ,y) and fr’(x ,y), in the current 

expansions are replaced by Mz equivalent “delta” sources, 

“i=lq=, 

where (xxIn, yr:) are the locations of the delta sources 

associated with’the nth basis or testing functions [ 11. 
Substitution of (5) into the integrals that define the 
elements of the MOM matrix yields 

where m = l,... N,,;n = l,... NY. (6) 

In the above equation, K, , K, are the total number of the 

AIM grid points alongx and y, respectively. Since only Mz 

delta sources are used in (5), the matrices B’“’ and T’“’ 

each have only M’ . N” , u = x or y  , non-zero elements. 

Thus, the matrix-vector product in the iterative solution of 
the MOM equation may be computed as 

Because the Green’s function for interactions between the 
delta sources on the rectangular grid has a convolutional 
form, the complexity of (7) is 0( N log N) and the product 

can be computed using FFT. The product Z, .I is 

computed at each iteration (see (4)). 
While the calculation of the “far-zone” interactions using 

the AIM process is accurate, the calculated “near-zone” 
interactions are not. Thus, the operation 

ZAIM .I -q,- .I is required to correct the calculation of 

the “near-zone” interactions by replacing the AIM 
calculations with those obtained using the “exact” MOM 
representation of the expansion function interactions. 
These operations are of O(N) complexity. 

AIM implementation also relaxes memory requirements 
since only the MOM matrix elements that describe the 

“near-zone” are stored. Avoiding the O(N*) storage of 

the MOM matrix results in memory requirements of O(N) . 

Furthermore, since Green’s function matrices are Toeplitz, 
the memory requirements also scale as O(N) . 
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111. GTEEN’S FUNCTION OF PLANAR LAYERED MEDIA 

In [3], a closed-form formula for the Green’s function in 
planar stratified media was given as a finite series of Hankel 
functions. This representation was found by using finite- 
difference scheme to solve for the vector potentials in the 
spectral domain, which leads to analytic evaluation of 
Sommerfeld integrals. Briefly presented here is a similar 
approach based on the expansion of the vector potentials 
in terms of Chebyshev polynomials. The method is valid 
for arbitrary orientation of exciting electric or magnetic 
dipole. 

As an example, let us consider an i directed electric 
dipole located at x’ = r’ = 0 and embedded in N dielectric 

layers stacked in i . To describe the dipole field it is 
necessary to consider two components of vector potential. 
Here, as in [3], the magnetic vector potential is taken to be 
A = A/i+ A,2 , where H =V x A . After applying Fourier - 

Bessel transform to the scalar Helmholtz equations for the 
vector potentials, and defining an auxiliary potential as 

A. =aA&, we arrive at the following equations to solve 

in the spectral domain 

(8) 
Within each layer, the solution of both iX and A, is 

expanded in terms of M+l Chebyshev polynomials of 
order zero to M . Substitution of this expansion into (8) 
and applying a point collocation technique using the 
Gauss-Labatto collocation points, the solution in each layer 
can be written in the form 

[D2+k21]&[h’I]B=-f. (9) 

Here I is the (M + 1)x (M + 1) identity matrix, ii is a vector 

of 2(M+l) unknowns corresponding to the potentials at 

the collocation points, f  is a vector of all zeros except for 
the collocation point corresponding to z’ if it exists in this 
layer, and D2 is the square of the Chebyshev collocation 
derivative matrix for the Gauss-Labatto points given in [5]. 
It should be noted that the dipole must be located at an 
interface between two layers in order for the solution to 
have a discontinuous derivative at z’. I f  the dipole does 
not already reside at a layer interface, an “artificial” 
interface must be added at this location. The N equations 
in the form of (9) are then combined into a single 
2N(M -l)x2N(M +I) matrix equation in block form, 

where the equations at collocation points corresponding to 
the layer interfaces have been removed. To couple 
together the N matrix blocks, the unknowns 
corresponding to potentials located at the layer interfaces 

will be removed by use of the boundary conditions [3]. 
The boundary conditions at the layer interfaces are 

;4,’ =;;-, q =;i- d& dk --IA6 
2 ’ -jyyg -2x z=*’ 

The + and - represent the solutions at the interface from 
above and below respectively, and 8,. = 1 at the interface 

corresponding to the dipole location. These boundary 
conditions can be found in [3] for interfaces where 6,, = 0. 

To use these boundary conditions, we first note that the 
layer interfaces correspond to collocation points, and the 
z derivative of the potential at the ia collocation points 
can be written as [5] 

d/i d; y;4 . -- (11) 

In (11) d is the thickness of the layer, Oii is the ij* 

element of the derivative matrix D, and iti is potential at 

the j” collocation point. Equation (11) is applied to (10) 

for both 4 and &, and the resulting relationships are 

used to eliminate the unknown potentials at the interface 
locations. Once this is done, the system of 2N(M-1) 

unknowns can be written in the form 
[A+hZ+=-f (12) 

where Aand ii are now a full matrix and vector due to the 
application of (10). Eigenvalue decomposition on A gives 
pole-residual form for the spectrums of potentials. AS a 
result, the inverse Fourier-Bessel transform provides a 
closed-form formula for the potential in spatial domain 

(13) 
Here or =&Jexp(-j/2arg(s,))r TV is the * th 

Chebyshev polynomial, the zn ‘s are the collocation points 

for the layer where the observation point z is located, P 
and s are the eigenvectors and eigenvalues of A, and R is 
the matrix vector product R = P-’ . f  . Coefficients c,,c, 

are equal to 2, if m, n = 0 or M and 1 otherwise. 
Although three nested series appear in (13), the superior 

convergence of the Chebyshev polynomials, compared to a 
finite difference solution, allows for a smaller number of 
total unknowns that reduce the complexity of the 
eigenvalue decomposition. In addition, the use of 
Chebyshev polynomials allows for the derivative of A, 

with respect to z to be more accurately taken as analytic 
derivatives of the Chebyshev polynomials. 
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VI. NUMERICAL FWULTS 

To validate the proposed formulation of the Green’s, 
function in conjunction with the AIM algorithm, we 
considered various microwave components such as 
microstrip antennas, filters and multi-conductor 
transmission lines. On Fig.2 the input impedance of a low- 
pass filter considered in [6] versus frequency is presented, 
The solid line on the plot corresponds to the MOM: 
solution based on the Green’s function generated by, 
discrete complex image method and the crosses correspond 
to the solution obtained by AIM using the Green’s 
function described in this paper. It is important to notice 
that results in Fig. 2 were obtained using applied-voltage 
excitation model [4] without deembeding of the effects 
associated with truncation of the feeding lines. The lines 
were truncated at the length of IOmm on both sides of the 
filter and the second port was left open. 

In Fig. 3 CPU time per iteration and memory storage 
required for MOM and AIM versus number of unknowns is 
shown. One can see that the memory used by AIM grows 
linearly with the number of unknowns IV, while the memory 
required for a standard MOM solution grows as N2. Such 
dramatic memory savings are possible because storage of 
the entire matrix Z is avoided in the AIM solution. It is 
also be noted that relatively few elements of Z , only those 
associated with near interactions, are computed. Hence the 
AIM scheme tills the matrix in O(N) CPU operations 
instead of 00 operations traditionally required by MOM. 

In Fig. 3 we also demonstrate that AIM leads to 
O(N log(N)) CPU time complexity per iteration for the 
matrix-vector product Z -1, compared to 00 complexity 
associated with the method of moments. Clearly, for a low 
number of unknowns direct matrix-vector evaluation is 
faster, but time saving advantages for the iterative solver in 
the AIM implementation becomes obvious when the 
number of unknowns exceeds 1 03. 

V. CONCL~JSI~N 

Fast algorithms become essential when the number of 
unknowns associated with a microwave circuit analysis 
problem is large. In this work we demonstrated how a new 
efficient Green’s function evaluation scheme could be used 
in conjunction with AIM to provide fast and accurate tool 
for simulation of dense planar integrated circuits. 
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